If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=-16t^2-48t+64
We move all terms to the left:
0-(-16t^2-48t+64)=0
We add all the numbers together, and all the variables
-(-16t^2-48t+64)=0
We get rid of parentheses
16t^2+48t-64=0
a = 16; b = 48; c = -64;
Δ = b2-4ac
Δ = 482-4·16·(-64)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-80}{2*16}=\frac{-128}{32} =-4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+80}{2*16}=\frac{32}{32} =1 $
| 87+z=12 | | 5x+7=-32+26x | | 2(4x2)+7(-3+5x)=(32+44x) | | x/20=154/280 | | 7p+5=-9 | | 5(x+2)=x/2+9x | | (x+5)(x–20)=(x–1)2(x+5)(x–20)=(x–1)2 | | (x+5)(x–20)=(x–1)2 | | (X+10)+(2x-20)=90 | | 3x+(-5+2x)=2x-(-2x+10) | | 4/15=x/90 | | 4/15=24/x | | x3=5 | | 4758(1+r)^2-3017=552 | | 5=37+x | | 6w+2.7=6w/3-6 | | -5/7w=-28 | | 4d÷3=-11 | | 2.71828^(2x+3)=8 | | -52z=-104 | | 43/5=2y+9 | | 6/(x-3)=2/3 | | 2.71828^2x+3=8 | | 8-4s=s+3 | | 10x-13+9x-1=138 | | (1.25+x)/(2.00-x)=2.5 | | 8y-32=8(y-8) | | x+24+10x-6=62 | | f(3)=f(-2.4) | | 16p2+49=0 | | 11x-48+10x-26=115 | | L5+4/3(-1)=n |